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ABSTRACT

Iron is unique among all minerals in that humans have no regulatable excretory pathway to eliminate excess iron after it is absorbed. Iron deficiency
anemia occurs when absorbed iron is not sufficient to meet body iron demands, whereas iron overload and subsequent deposition of iron in key
organs occur when absorbed iron exceeds body iron demands. Over time, iron accumulation in the body can increase risk of chronic diseases,
including cirrhosis, diabetes, and heart failure. To date, only ∼30% of the interindividual variability in iron absorption can be captured by iron status
biomarkers or iron regulatory hormones. Much of the regulation of iron absorption may be under genetic control, but these pathways have yet to be
fully elucidated. Genome-wide and candidate gene association studies have identified several genetic variants that are associated with variations in
iron status, but the majority of these data were generated in European populations. The purpose of this review is to summarize genetic variants that
have been associated with alterations in iron status and to highlight the influence of ethnicity on the risk of iron deficiency or overload. Using extant
data in the literature, linear mixed-effects models were constructed to explore ethnic differences in iron status biomarkers. This approach found that
East Asians had significantly higher concentrations of iron status indicators (serum ferritin, transferrin saturation, and hemoglobin) than Europeans,
African Americans, or South Asians. African Americans exhibited significantly lower hemoglobin concentrations compared with other ethnic
groups. Further studies of the genetic basis for ethnic differences in iron metabolism and on how it affects disease susceptibility among different
ethnic groups are needed to inform population-specific recommendations and personalized nutrition interventions for iron-related disorders. Adv
Nutr 2021;12:1838–1853.
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Introduction
Iron is an essential trace element involved in numerous
metabolic processes, including oxygen transport and utiliza-
tion, cellular proliferation, DNA synthesis, neurotransmitter
synthesis, and energy production (1, 2). Iron is the fourth
most common element in the Earth’s crust (1, 3), yet iron
deficiency (ID) remains prevalent, affecting an estimated
2.5 billion people worldwide (4). Iron overload (IO), on
the other hand, is associated with adverse health outcomes
caused by the accumulation of iron in organs, particularly the
pancreas, liver, and heart. Elevated iron stores are associated
with increased risk of type 2 diabetes, independent of
inflammation (5, 6), and increased risk of cardiovascular
disease (7, 8), liver fibrosis, and cancer (9–11). Moreover,
age-related iron accumulation in the brain strongly predicts
cognitive decline, motor impairment, and the development
of neurodegenerative diseases (12, 13). A causal role of
enhanced iron status in these diseases has been noted in
animal models of IO (14, 15).

Increased attention has been focused on the genetic
contributions to iron status. Population differences in the

frequency of genetic variants that are associated with in-
creased risk of iron disorders may explain varying iron status
in different ethnic groups. No studies to date have pooled
existing data to summarize current findings and knowledge
on ethnic differences in iron status. This review summarizes
data on genetic variants found to be associated with iron
metabolism across different ethnic groups and statistically
evaluates published data on iron status as a function of
ethnicity.

Current Status of Knowledge
Iron physiology
Iron absorption.
Dietary iron is ingested as heme iron (from animal-based
foods) and nonheme iron (from animal- and plant-based
foods). Heme iron is only minimally impacted by iron stores.
The proteins involved in heme iron absorption are unique
to heme iron and the pathways involved in this process
continue to be elucidated (16–18). In contrast, nonheme
iron absorption is tightly regulated in response to body
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iron demands and mutations in the proteins involved in
nonheme iron absorption are associated with known iron-
related diseases (16, 19, 20).

Dietary nonheme iron is ingested primarily as ferric iron
(Fe3+) that must be reduced to ferrous iron (Fe2+) (by
duodenal cytochrome b) before it enters the enterocyte via
the divalent metal transporter 1 (DMT1). Once absorbed,
Fe2+ can either be stored as ferritin, used for intracellular
functions, or exported via the only known nonheme iron ex-
port protein in the body, ferroportin (FPN). Once exported,
the ferroxidase hephaestin oxidizes Fe2+ to Fe3+, which can
then bind to transferrin (TF) in the bloodstream (16, 20, 21).
At other locations in the body, ceruloplasmin functions as
a ferroxidase (22), and the placenta also expresses a unique
ferroxidase (zyklopen) (23).

Systemic iron homeostasis.
Transferrin-bound Fe3+ in circulation is taken up by cells
using receptor-mediated endocytosis via transferrin receptor
(TFR) 1 (TFR1). Cellular expression of TFR1 is highest in
erythroid tissue to support erythropoiesis. Under normal
circumstances, ∼30% of the iron-binding sites in the plasma
TF pool are occupied. This value is referred to as transferrin
saturation (TSAT) (16, 24). When TSAT exceeds 45%,
iron begins to circulate free or bound to low-molecular-
weight molecules (citrate, albumin), generating potentially
toxic iron species known as non–transferrin-bound iron
(NTBI). The pancreatic cells and hepatocytes can internalize
NTBI via Zrt- and Irt-like protein 14, while cardiomyocytes
are purported to internalize NTBI through L-type or T-
type calcium channels (25, 26). Cellular uptake of NTBI
can increase the intracellular labile iron pool, resulting in
generation of reactive oxygen species that can cause oxidative
damage, adversely impacting specific organs and, over time,
increasing the risk of chronic diseases.

Only 1–2 mg of absorbed iron/d is needed to offset
the typical amounts of endogenous daily iron losses. The
majority of iron utilized to support erythropoiesis (20–
25 mg/d) is obtained from catabolism of senescent RBCs.
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Several hormones are now known to be involved in the
regulation of systemic iron homeostasis, including hepcidin,
erythropoietin, and erythroferrone.

Hormonal control of iron physiology.
Of the 3 iron-related hormones, hepcidin is the major
regulator of body iron balance. This hepatic hormone binds
to FPN, thereby reducing iron export from the enterocyte
and iron release from stores (27). Hepcidin production
is induced by iron loading or inflammation/infection and
suppressed by increased erythropoietic demand or hypoxia.
The regulation of hepcidin involves multiple membrane
proteins [matriptase-2 (MT-2), hemojuvelin (HJV), bone
morphogenetic protein receptor (BMPR) 1 and 2 (BMPR1
and BMPR2), TFR1 and TFR2, high iron protein (HFE), and
IL-6 receptor], intracellular signaling pathways [bone mor-
phogenetic protein–small mothers against decapentaplegic
(BMP-SMAD), Janus kinase–signal transducer and activator
of transcription protein (JAK-STAT)], and hormones (ery-
thropoietin, erythroferrone) (21, 28–30). Genetic mutations
in these proteins are associated with iron disorders as shown
in Figure 1.

Assessment of iron status
Multiple biomarkers are used to represent iron status of
individuals and/or populations. Ferritin is the primary
intracellular iron storage protein and some is released into
circulation as serum ferritin (SF) (31). Low SF concentrations
are indicative of depleted iron stores. Elevated concentrations
of SF can indicate excessive iron stores or inflammatory
conditions since ferritin is an acute-phase protein (31). Total
iron binding capacity (TIBC) indicates the total number of
binding sites for iron in TF, which is the main iron transport
protein in circulation. TIBC, in combination with serum
iron, can be used to calculate TSAT, which reflects iron supply
to tissues (31). Soluble transferrin receptor (sTfR) reflects
the intensity of erythropoietic and cellular demands for iron
(31). An increase in sTfR concentrations indicates an increase
in cellular iron requirements or insufficient iron supply to
tissues (31). In late stages of ID, hemoglobin production is
compromised, which can result in anemia (31). A summary
of the typical cutoffs for ID and/or IO for common iron status
indicators is provided in Supplemental Table 1.

Genetic variants of iron metabolism
Tight control of iron absorption is needed to prevent ID or
IO, but to date, only ∼30% of the interindividual variability
in iron absorption can be captured by hepcidin or other iron
status biomarkers (32–36). Marked ethnic differences in the
risk of ID or IO have been known to exist, as highlighted by
the CDC cutoffs used to denote anemia (37). To investigate
the genetic contributions to variations in iron status between
and within populations, multiple genome-wide association
studies (GWASs) and candidate gene association studies have
been undertaken. The following sections cover pathogenic
mutations in iron-related genes identified to date that result

Ethnic differences in iron status 1839

https://academic.oup.com/advances/
mailto:koo4@cornell.edu


FIGURE 1 Genetic mutations in hepatic hepcidin signaling pathways. Hepcidin is regulated by infection/inflammation (left), iron status
(middle), and erythropoietic demand (right). Pathogenic mutations in genes that encode proteins involved in the regulation of the
hepcidin or FPN result in iron deficiency (green X) or iron overload (red X). When serum transferrin is saturated, diferric-transferrin binds to
TFR1 and displaces HFE. HFE can then form a complex with TFR2 and possibly HJV to promote the BMP-SMAD hepcidin signaling
pathway. Recessive mutations in the genes encoding these proteins (HFE, TFR2, HJV, hepcidin) result in decreased hepcidin production
preventing hepcidin from being upregulated as iron stores accumulate leading to iron overload. Under low oxygen conditions, MT-2
cleaves HJV, generating a soluble and inactive form of this protein, resulting in the inactivation of the BMP-SMAD signaling pathway and
downregulation of hepcidin transcription. Genetic mutations in MT-2 result in uninhibited hepcidin production leading to IRIDA. High
erythropoietic demand results in upregulation of erythroferrone, which suppresses hepcidin production by sequestering BMP6 and
inhibiting BMP-SMAD signaling. In inflammation, IL-6 binds to IL-6 receptor, stimulating the JAK-STAT pathway and upregulating hepcidin
production. Dominant gain- and loss-of-function FPN1 mutations result in hepcidin resistance or in cellular iron accumulation (particularly
in macrophages), respectively. Recessive mutations in DMT1 result in iron loading anemia. Likewise, recessive mutations in TF result in
reduced concentrations of functional TF and iron loading anemia. The figure was created using BioRender.com. BMP, bone morphogenetic
protein; BMPR, bone morphogenetic protein receptor; DMT-1, divalent metal transporter 1; FPN, ferroportin; HAMP, hepcidin, HFE, high
iron protein, HJV, hemojuvelin; IRIDA, iron refractory iron deficiency anemia; JAK-STAT, Janus kinase-signal transducer and activator of
transcription protein; MT-2, matriptase-2; SMAD, small mothers against decapentaplegic; TF, transferrin; TFR, transferrin receptor.

in ID or IO, and polymorphisms within iron- and non–iron-
related genes found to be associated with variations in iron
traits among healthy populations. Genetic variants associated
with iron status in healthy populations stratified by ethnic
group are summarized (Supplemental Table 2).

Genetic variants related to IO
Genetic mutations in proteins involved in the regulation
of the hepcidin-FPN axis result in aberrant expression
of hepcidin or FPN (38) and can eventually lead to IO.
Disorders of the hepcidin-FPN axis cause subtypes of
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hereditary hemochromatosis (HH), a heterogeneous genetic
condition found primarily in Northern Europeans. The most
common form of HH occurs from mutations in HFE, but
HH can also result from mutations in HJV, hepcidin gene
(HAMP), TFR2, and FPN1, which are collectively referred
to as non-HFE hemochromatosis. The pattern of inheritance
of pathogenic mutations in HFE, HJV, HAMP, and TFR2 is
autosomal recessive, whereas in FPN1 is autosomal dominant
(39). While mutations in these iron-related genes have
been described as causative for HH, some single nucleotide
polymorphisms (SNPs) within, or in close proximity to
these genes, have been associated with iron traits in healthy
populations.

HFE.
HFE was named as the high iron (high Fe) or hemochromato-
sis protein when it was discovered in 1996 to harbor a mu-
tation that was highly prevalent in patients with hemochro-
matosis (40). This major histocompatibility complex class
I–like protein stimulates the intracellular BMP-SMAD hep-
cidin signaling pathway. Recessive mutations in HFE result
in decreased hepcidin production and, thus, hepcidin is
not appropriately upregulated as iron stores accumulate (41)
(Figure 1). HFE-related hemochromatosis or HH type 1
is most commonly associated with 2 missense mutations,
C282Y and H63D. The iron burden and clinical phenotype
presented in patients with HFE-related hemochromatosis is
highly variable. The classic biochemical abnormalities seen
in C282Y homozygous individuals include elevated TSAT
and SF and tissue IO. Although biochemical penetrance
of homozygosity for this mutation is high (75–100% in
males, 40–60% in females) (42–44), the clinical penetrance
is much lower, affecting men at higher rates than women (2–
38% and 1–10%, respectively) (45, 46). Interestingly, H63D
homozygosity rarely results in clinical disease development,
except when this mutation is present with C282Y, both in
heterozygote states (40, 47).

The prevalence of the C282Y and H63D mutations varies
among ethnic groups and is one of the best examples of
ethnic differences in iron metabolism (48). The C282Y
homozygosity is most prevalent (0.3–0.5%) in individuals
of Northern European descent (44, 49–52). This mutation
is thought to have originated in a Celtic population 60–70
generations ago (53–55). A Viking origin of this mutation
has been proposed as the highest frequencies are observed
in populations of Northern European descent (i.e., Viking
populations) (56). The Hemochromatosis and Iron Overload
Screening (HEIRS) Study reported the highest prevalence
(0.44%) of C282Y homozygosity among unrelated non-
Hispanic white individuals (44). The prevalence of C282Y
homozygosity has been reported at even higher frequencies
in specific regions of Northern Europe, particularly Ireland
(1.24–1.96%) (57, 58). In addition, the highest average
allele frequency in HFE has been reported among this
population (10.1%) (48). The lowest prevalence of C282Y
homozygosity in the HEIRS study was reported among
Asians (0.000039%), followed by Pacific Islanders (0.0132%),

African Americans (0.014%), Hispanics (0.027%), and Native
Americans (0.11%) (44).

The H63D mutation has a broader distribution, with
higher frequencies throughout Europe and other geograph-
ical locations (48). The estimated prevalence of H63D
homozygosity in the HEIRS study was 2.4% in non-Hispanic
whites, 1.3% in Native Americans, 1.1% in Hispanics, 0.089%
in African Americans, and 0.02% in Pacific Islanders and
Asians (44). The prevalence of C282Y/H63D compound
heterozygosity reported in the HEIRS study was 2.0% in
non-Hispanic whites, 0.77% in Native Americans, 0.33% in
Hispanics, 0.071% in African Americans, 0.096% in Pacific
Islanders, and 0.0055% in Asians (44).

SNPs in HFE corresponding to C282Y and H63D have
been associated with iron and erythrocyte traits in healthy
populations. The SNP rs1800562 that results in the C282Y
variant has been associated with several iron biomarkers
(59–63) and hematological parameters (64) that reflect both
systemic and cellular iron homeostasis at the genome-wide
level among Europeans. The SNP rs1799945 that results in
the H63D variant has also been associated at the genome-
wide level with various iron traits (59, 65) in Europeans.
In Hispanics, both rs1800562 and rs1799945 have been
shown to be associated with iron status biomarkers (66). In
African Americans, only the association of rs1800562 with
SF and TF seen in Europeans has been replicated (67). It is
noteworthy that these variants are nearly absent in Asians
and Pacific Islanders (44, 52), and no associations between
these mutations and iron biomarkers have been reported in
these populations (68).

HJV and HAMP.
HJV encodes the hemojuvelin protein, which acts as a
BMP co-receptor to regulate the expression of HAMP (21)
(Figure 1). Juvenile hemochromatosis (JH) or HH type 2 is
the most severe form of HH (69, 70) and can arise from
pathogenic mutations in HJV (HH subtype 2a) or HAMP
(HH subtype 2b) and results in cardiomyopathy, diabetes,
and hypogonadism by the early 20s (69, 70). In rare instances,
adult-onset HH due to HJV mutations has been observed (71,
72). Biochemical abnormalities of JH include high TSAT and
marked increases in SF (70). Interestingly, a systematic review
assessing the genotypic and phenotypic spectrum of HJV
mutations in patients with HH reported ethnic disparities
in the clinical presentation of HJV-related HH between
Europeans and East Asians (73). This same review (73), in
agreement with a phenotypic analysis of HH subtypes (70),
found that European males and females were affected equally,
while East Asian males were affected at higher rates than their
female counterparts (73).

The first comparative study of the prevalence of HFE-
and non–HFE-related HH reported a predicted prevalence
of homozygous HJV pathogenic mutations of 1 in 5 million
using available next-generation sequence (NGS) databases,
with the highest predicted prevalence in South Asians (74).
Homozygous HAMP pathogenic mutations were predicted
to be even rarer (1 in 182 million) (74). Of note, these
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predictions may be restricted given that the populations were
not representative of all the pathogenic mutations within the
HH-related genes identified to date.

Mutations in HJV account for up to 90% of JH cases (73),
and most have been identified in a single family or small
populations (73). The G320V mutation is a more common
HJV mutation and is restricted to European ancestry (75, 76).
Other mutations have been described only within individuals
of Asian or Pacific Island ancestry (73, 77), some are more
common among East Asians (e.g., C321X, Q312X) (71, 78–
85), and some among South Asians (e.g., G336X, G99R,
P192L, L194, C80Y, A343PfsX23) (77, 86, 87). Few mutations
have been described in Africans (e.g., R385X, A310G) (73, 88,
89); however, these are not restricted to African ancestry (90–
93). Mutations in HAMP result in a rare form of JH and have
been characterized in patients from varying geographical
locations (87, 93, 94–102).

Interestingly, no polymorphisms within HJV or HAMP
have been associated with variation in iron traits among
healthy individuals. A candidate gene association study
reported an association between the SNP rs10421768 in
HAMP and hemoglobin among a Kenyan cohort (n = 628)
(103), but the significance of this association disappeared
after adjustment for multiple testing.

TFR2.
TFR2 forms a complex with HFE and possibly HJV to
promote BMP-SMAD signaling and upregulate hepcidin
production (29) (Figure 1). HH type 3 results from
pathogenic mutations in TFR2 and is a disease mainly of adult
onset, although more severe mutations have been described
in early childhood (104–106). Biochemical abnormalities
include elevated TSAT and SF (24). Although the true
prevalence of TFR2 mutations is unknown, homozygous
TFR2 pathogenic genotypes have been estimated (using
available NGS databases) to be 1 in 6 million and were
predicted to be most frequent among non-Finnish European
populations from the ExAC database (74).

Most mutations in TFR2 that result in HH type 3 have
been clustered in ∼45 families worldwide (107), but some
mutations have been described among unrelated individuals
from different ethnic groups (105, 108–111). TFR2-related
HH may be the leading cause of IO in Asians, predominantly
those from Japan (112, 113). The I238M variant is present in
Asians at a higher frequency (0.0192) (112); however, it is not
restricted to Asian ancestry (93).

The rs7385804 SNP in TFR2 has been associated with
iron biomarkers (59, 64, 65) and RBC parameters (59,
114) at genome-wide significance in healthy Europeans.
The associations of rs7385804 with serum iron and TSAT
have been replicated in Hispanics (66) and Chinese women
(115). Another SNP within TFR2, rs7786877, has been
associated with mean corpuscular volume (MCV) at the
genome-wide level among individuals of European ancestry
(64).

FPN.
The FPN1 gene encodes FPN, which regulates cellular export
of non-heme iron (116) (Figure 1). Pathogenic mutations
in FPN1 can result in 2 phenotypically distinct diseases,
HH type 4A (FPN disease) and HH type 4B. HH type
4B is caused by gain-of-function mutations resulting in
partial or complete hepcidin resistance (117). Individuals
with these mutations present with high SF, TSAT, organ IO,
and progressive organ damage (117). The phenotype of HH
type 4B resembles other recessive HH-causing mutations
(117). Conversely, FPN disease is due to dominant loss-
of-function mutations that result in impaired iron export,
particularly from reticuloendothelial cells (117). The classical
phenotype of FPN disease includes high SF, normal to low
TSAT, low hemoglobin concentrations, and progressive iron
loading (117, 118). FPN disease seems to have a milder
clinical presentation as it has not been shown to cause major
organ damage (119, 120), conceivably because macrophages
protect against reactive oxygen species when burdened with
iron (117). Not all FPN mutations have been classified based
on their phenotypic presentation or pathogenicity (117, 119).

Globally, the estimated pathogenic genotype carrier rate
of FPN1 mutations (using available NGS databases) is 1 in
1373 (74). The highest predicted pathogenic genotype carrier
rate was reported in African Americans (0.25%), followed
by Americans (0.039%), East Asians (0.033%), and non-
Finnish Europeans (0.03%) (74). A systematic meta-analysis
of FPN1 mutations found 31 disease-causing mutations in
161 individuals by 2010 (119), and more recently, a total of 60
variants in 359 individuals was described between 1999 and
2019 (120). The most frequently reported FPN1 mutation is
the V162del loss-of-function mutation (119–126).

Few polymorphisms in FPN1 have been associated with
iron traits in healthy populations. Q248H is the most com-
mon FPN1 variant among individuals of African ancestry
and is present at polymorphic frequencies in African popu-
lations (2.2–13.4%) (127–131). The Q248H variant has been
weakly associated with increased SF concentrations among
individuals with primary IO and healthy individuals (127–
129, 131–133), and this association seems to be stronger in
men (132, 133). This polymorphism may confer a protective
effect against ID (128, 134), anemia, and iron deficiency
anemia (IDA) (134) in African children, particularly those
with underlying inflammation. While conflicting (134), a
protective effect against malarial infection has also been
suggested. The largest GWAS on iron status conducted
in healthy Europeans identified an SNP (rs744653) near
FPN1 that was associated with SF and TF at genome-
wide significance (59), and the association with SF was
replicated in a recent candidate gene association study
among Europeans (135). Last, a GWAS conducted in healthy
Chinese men found an SNP (rs5742933) located in close
proximity to the FPN1 gene that was associated with SF at
the genome-wide level (136). However, this SNP seemed to
be in weak linkage disequilibrium (R2 and D′ <0.20) with
SNPs located within FPN1 (136).
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Genetic variants related to ID
As with IO, several SNPs in iron-related genes have been
associated with increased risk of anemia, ID, or IDA
in healthy populations of various ethnicities. Hereditary
disorders that result in anemia include iron-refractory iron
deficiency anemia (IRIDA) and iron loading anemia.

TMPRSS6.
MT-2 is produced in the liver and negatively regulates expres-
sion of hepcidin by cleaving HJV and, in turn, inactivating
the BMP-SMAD pathway (137) (Figure 1). Genetic muta-
tions in the MT-2 protein [transmembrane serine protease 6
(TMPRSS6)] can result in uninhibited hepcidin production
leading to IRIDA (138–140). This disease is characterized
by congenital hypochromic, microcytic anemia; low MCV
and TSAT; low to normal SF concentrations; and defective
iron absorption and utilization (138, 141). IRIDA is usually
unresponsive to oral iron, and only partially responsive to
parenteral iron treatment (138).

The prevalence of pathogenic mutations resulting in
IRIDA is unknown (140–142). So far, 69 different TMPRSS6
mutations in 65 IRIDA families of different ethnicities
have been identified (137, 141–144). Most IRIDA patients
have homozygous mutations in TMPRSS6 and, thus, the
mode of inheritance is considered to be recessive (143).
However, heterozygous mutations may also result in a
clinical phenotype that resembles IRIDA but with a milder
presentation (141, 143). More recent evidence suggests that
IRIDA is a highly heterogeneous disease and some patients
have been found to respond to oral iron therapy (143).

Several genome-wide and candidate gene association
studies conducted in healthy populations of mainly non-
African origin have found common SNPs in TMPRSS6 to
be associated with iron traits. The most reported SNP in
TMPRSS6, rs855791 (V736A), has been associated with iron
status indicators (59, 62, 145, 146), RBC parameters (59, 64,
147), and liver iron content (148) in healthy individuals of
European ancestry at genome-wide significance. In addition,
candidate gene studies in Europeans have replicated the
association of this SNP with SF (135, 149) and serum iron
(149) and have identified associations with sTfR (61) and
the sTfR-to-SF ratio (150). This SNP was also associated
with hemoglobin (6, 115) and iron status indicators (6, 115)
in East Asians, and with serum iron in Hispanics (66).
A systematic review with meta-analysis found the minor
allele (A) frequency (MAF) of rs855791 to be significantly
higher in Asians than in Europeans (0.55 vs. 0.42) (151).
This same review showed that each A allele was associated
with 0.11-g/dL lower hemoglobin concentrations, 3.71-μg/L
lower SF concentrations, and 0.2-mg/L higher sTfR, and the
differences in effect estimates between ethnicities were not
significant (151). Significant differences in MAF between
Africans and non-Africans have been reported (152). The
rs855791 SNP has a significantly lower MAF in Africans
(<0.1) compared with non-Africans (<0.35), yet Africans
have a high prevalence of anemia (152).

The second most reported SNP in TMPRSS6 is rs4820268
(D521D) and it has been associated with iron biomarkers
(60, 65, 146), and hemoglobin in Europeans (147), with SF
and hemoglobin in East Asians (6), and with hemoglobin
in South Asians (147). The association with serum iron
was replicated in a candidate gene study of Europeans
and an association with SF was identified (149). A study
in Europeans found the rs4820268 GG genotype to be
associated with lower serum iron, hemoglobin, MCV, and
mean cell hemoglobin, and higher TF, sTfR, and sTfR:SF
(65). Furthermore, a meta-analysis of 13 study populations
showed that the G allele resulted in a 0.12-μg/L increase
in SF concentrations among Europeans and a 3.69-μg/dL
decrease among Asians (151). Analysis of 3 studies among
Europeans suggested an association between the G allele
and a reduction in sTfR (151). However, there was high
heterogeneity of the effect of each allele on the variation in
iron status parameters reported in studies among Europeans
included in this meta-analysis (151). Consistent with these
observations, a recent study assessing differences in allele
frequencies among different populations found that South
and East Asians had the highest number of iron-lowering
alleles and Africans had the lowest number of low-iron risk
alleles (152). Furthermore, studies in Chinese populations
identified rs855791 and rs4820268 polymorphisms as genetic
risk factors for developing anemia, ID, and IDA (6, 115).
Several other SNPs in TMPRSS6 have been associated with
RBC parameters (64, 147), and iron biomarkers (146) among
different ethnic groups.

TF.
Autosomal recessive mutations in TF cause severely reduced
serum concentrations of functional TF and lead to hypo-
transferrinemia (or atransferrinemia) (Figure 1). This rare
disorder is characterized by iron-deficient erythropoiesis and
anemia due to insufficient iron supply to erythropoietic
tissues and severe IO in non-hematopoietic organs due to low
hepcidin concentrations and increased non–TF-mediated
iron uptake (153, 154). Only 18 cases among 16 families
worldwide have been described to date (155, 156).

While mutations that result in hypotransferrinemia are
extremely rare, several SNPs in TF have been associated
with iron status in populations from different ethnic origins.
The rs3811647 SNP in TF has been associated with TIBC
and TF in genome-wide and candidate gene association
studies in Europeans (60, 63, 65, 150, 157). Other SNPs in
TF have been associated with serum iron, TF, and TSAT
(59). Associations of several polymorphisms in TF with
TIBC found in Europeans have been replicated in Asians,
Hispanics, and/or African Americans (157). In addition,
a candidate gene association study in Chinese women
found TF polymorphisms were significantly associated with
serum iron, TF, and TSAT (115). Other SNPs in TF have
been associated with TSAT and TIBC in Hispanics (66),
and with TIBC in African Americans (67). Moreover, the
GWAS in African Americans found the top 2 SNPs in
TF to explain 11.2% of the variation in TIBC in this
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population (67). Interestingly, unlike other iron-related genes
discussed in this section, in TF, no SNPs have been reported
to be associated with hematological traits in any ethnic
group.

DMT1.
DMT1 transports dietary iron into enterocytes (Figure 1)
or out of intracellular endosomes. Pathogenic mutations in
DMT1 result in microcytic anemia and severe organ iron
loading (141). Despite having body iron excess, patients
with defects in DMT1 have normal to mildly elevated SF
concentrations (141). Iron loading anemia due to mutations
in DMT1 is extremely rare, with only 7 patients from
6 families with homozygotes or compound heterozygotes
described to date (141). Despite the importance of DMT1
in iron trafficking, few polymorphisms have been associated
with iron traits. In a healthy Turkish cohort, the IVS4+44
polymorphism in DMT1 was associated with interindividual
variations in serum iron (158). This same SNP was associated
with up to a 4-fold increased risk of developing anemia in
Italian children with celiac disease (159).

Other genetic variants related to iron metabolism
Iron-related genes.
Polymorphisms in other iron-related genes involved in
transport of non-heme and heme iron [TFR1, cytochrome
b reductase 1 (CYBRD1), feline leukemia virus subgroup C
receptor-related protein (FLVCR), 6-transmembrane epithe-
lial antigen of prostate 3 (STEAP3), cluster of differentiation
163 (CD163)], in the regulation of cellular hepcidin signaling
pathways (SMAD8, BMP2, BMP4, BMP9, BMPR1B, BMPR2,
neogenin 1 (NEO1), protein convertase suntilisin/kexin
type 7 (PCSK7)], or intracellular iron signaling [hypoxia-
inducible factor 2ɑ (HIF2A), iron regulatory protein 1 (IRP1]
have been associated with or have suggestive associations
with ≥1 biomarker of iron status and/or erythrocyte pheno-
type in healthy populations (59, 61, 135) or act as modifiers
of HH phenotype (160–162) among individuals of European
descent.

Non–iron-related genes.
Although most genetic variants associated with iron status
indicators are within or in close proximity to iron-related
genes, genetic variants of non–iron-related genes have also
been identified. Among Europeans, SNPs in genes involved
in lipid metabolism were shown to be associated with TF
[N-acetyltransferase 2 (NAT2), aryl hydrocarbon receptor
nuclear translocator–like (ARNTL), fatty acid desaturase
2 (FADS2)], SF [ɑ1-3-N-acetylgalactosaminyltransferase
and ɑ1-3-galactosyltransferase (ABO), testis expressed 14
(TEX14)] (59), or serum iron [lipoprotein lipase (LPL)]
(146). In Hispanics, a SNP in myelin regulatory factor
(MYRF) that is in linkage disequilibrium with the FADS2
SNP identified in Europeans (59) was associated with
TIBC (66). Moreover, the associations between SNPs in
NAT2 with TF and in ABO with SF found in Europeans
(59) were generalized to Hispanics (66). Whether such

associations result from the confounding influence of
variations in lipid metabolism on iron status or reveal a
pleiotropic effect of lipid-related genes on iron regulation
needs further investigation. Interestingly, in analysis of
the UK Biobank samples, ferritin-associated SNPs in HFE
and TMPRSS6 conferred significant protection against
hypercholesterolemia, suggesting interplay of metabolic
pathways between lipid and iron (163). Other SNPs in
non–iron-related genes have been associated with iron traits,
including TIBC, unsaturated iron-binding capacity, serum
iron, and sTfR in Europeans (146, 157).

In African Americans, SNPs in the hepatoma-derived
growth factor–like protein 1 (HDGFL1) and MAF bZIP tran-
scription factor (MAF) have been associated with TIBC and
in growth factor receptor bound protein 2–associated protein
3 (GAB3) with SF at genome-wide significance (67). Among
these associations, only the significant SNP in GAB3 was
replicated in Hispanics (66). GAB3 is a member of the GBR2-
associated binding protein gene family and is involved in
several growth factor and cytokine signaling pathways. The
protein encoded by this gene is expressed in hematopoietic
tissues and facilitates macrophage differentiation (164, 165).

In East Asians, an SNP in postmeiotic segregation
increased 1 (PMS1) was found to be significantly associated
with SF (136). PMS1 encodes a protein thought to be involved
in DNA mismatch repair pathways and is expressed by var-
ious tissues, including hematopoietic tissues. Interestingly,
anti-PMS1 antibodies were found in Japanese patients with
aplastic anemia (10%), but none were detected in aplastic
anemia patients from the United States (166). In addition,
while PMS1 has not been shown to play a direct role in iron
homeostasis, it is in close proximity to FPN1.

Ethnic differences in iron status
Iron regulation is highly conserved, but risk of iron-related
disorders differs across major ethnic groups. These ethnic
differences may be a consequence of adaptive changes during
evolution that occurred due to limited iron availability, a
condition referred to as antagonistic pleiotropy. In antagonis-
tic pleiotropy, adaptive changes that arise from evolutionary
adaptations can become deleterious in the current environ-
ment. For iron, due to its importance in physiology, strong
selective pressures would have been expected to maintain
adequate iron status. These adaptations needed in an iron-
poor environment (i.e., mutations that increase iron absorp-
tion) may now be deleterious when iron is considerably
more abundant in our food systems. Understanding the
evolutionary context underlying dietary adaptation could
have strong implications in precision nutrition (167).

Large epidemiological reports of ethnic differences in
iron status indicators have been published over the past
few decades. Several studies of North American cohorts
have evaluated iron status in large groups of otherwise
healthy adults. The largest epidemiological study to date
that evaluated iron stores as a function of ethnicity was
the HEIRS study. This study recruited 101,168 primary-
care adults aged 25 y or older from the United States and

1844 Kang et al.



Canada, and evaluated SF and TSAT as a function of ethnicity
(self-reported as Hispanic, European, African American,
Asian, Pacific Islander, Native American) (168). Another
large epidemiological study, the Recipient Epidemiology
and Donor Evaluation Study–III recruited 12,683 men and
women participants of different ethnicities (self-reported
as African American, Asian, white, Hispanic, and other)
aged 18 y or older who had successfully donated whole
blood (169). This study was designed to examine the genetic
and metabolic basis of blood donor susceptibility to ID
and iron-related symptoms in multiple ethnic groups. The
Iron and Atherosclerosis Study (FeAST) was a prospective,
randomized, controlled, single-blinded clinical trial to test
whether iron reduction using phlebotomy in participants
with symptomatic but stable peripheral arterial disease can
effectively improve clinical outcomes. This study recruited
1277 European and African-American veterans over the
age of 21 (primarily males) (170). An additional study
among 1491 African-American and 31,005 European men
and women compared hematologic and iron status between
these 2 groups (171). Another study designed to deter-
mine the frequency of HFE mutations and its association
with iron-related genotypes involved 10,198 adults (self-
reported as black, Asian, white, and Hispanic) (172). Addi-
tional epidemiological data analysis examining iron status
among multiple ethnic groups was conducted using the
NHANES-III database involving 20,040 individuals aged 18
y or older (grouped as black, white, Hispanic, and other)
(173).

Similarly, large-cohort data on iron status have been
published in Europe. The population-based SUNSET (Suri-
namese in The Netherlands: Study on Ethnicity and Health)
was a multiethnic, cross-sectional study designed to test
the association between SF and the prevalence of type 2
diabetes and fasting glucose concentrations in a total of 2975
adults (174). In addition, 2 other cohort studies targeting
women of reproductive age were conducted to examine
ethnic differences in iron status (175, 176). Major findings
from these data are summarized below by ethnicity.

Europeans.
Most research to date has been conducted in Europeans,
who are often used as the reference group in comparisons
to other ethnic groups. Europeans have been consistently
shown to have a lower risk of ID and anemia, and higher
hemoglobin concentrations (171, 177–180). In addition,
TSAT in Europeans has been found to be significantly
higher than mean values observed in African Americans and
Hispanics (179, 180).

African Americans.
Lower hemoglobin concentrations are consistently reported
among African Americans compared with Europeans. These
differences have been noted in infancy and appear to be
maintained in the elderly (171, 176, 181–184). Existing data
from population groups with sample sizes ranging from 388
to 3074 indicate that the hemoglobin distribution observed

among African Americans is shifted to the left by ∼0.8
g/dL (184, 185). This difference has been highlighted by the
CDC and WHO to promote ethnicity-specific cutoffs for
hemoglobin in the diagnosis of anemia (37, 186).

Ethnic differences in the hemoglobin distribution remain
significant even after controlling for iron status (SF and
TSAT) (182, 184) and/or dietary iron intake (182), suggesting
that variation in hemoglobin concentration is not entirely
driven by factors related to iron metabolism. Despite lower
hemoglobin concentrations, African-American adults have
elevated SF concentrations compared with Europeans and
Hispanics (44, 170, 173, 183, 186–188). NHANES-III (173,
189), FeAST (170, 188), and HEIRS (179) data all found
significantly higher SF in African Americans compared with
Europeans. However, both NHANES and HEIRS (179, 180)
and Li et al.’s genetic study in African Americans (67)
found that African ancestry was associated with decreased
concentrations of serum iron and TSAT as well as increased
concentrations of sTfR. Moreover, the prevalence of ID and
anemia in HEIRS was greater in African Americans than in
Europeans and Asians among women of reproductive age
(177, 190, 191). At present, whether the elevated SF con-
centrations in African Americans reflect increased systemic
inflammation or elevated iron stores is unclear. African-
American populations are often at increased risk for obesity
compared with other ethnic groups (192), and elevated BMI
is positively correlated with SF concentrations, perhaps due
to adiposity-induced inflammation. The lower TSAT and
hemoglobin concentrations but higher SF concentrations
observed in African Americans might indicate that the
mobilization of iron from stores for erythropoiesis is reduced
due to some unknown genetic contributors (182).

East Asians.
Asian populations can be further subdivided into East Asians
or South Asians based on geographical distribution and
ethnicity. Although data in Asian groups are not as abundant,
numerous studies have reported that East Asian populations
exhibited higher iron stores and a higher risk of IO. This
finding is evident despite the fact that the frequencies of
the most common HFE mutations are lowest among Asians
(44). Of note, HEIRS individuals that self-identified as Asians
(predominantly East Asians: Chinese, Japanese, Vietnamese,
and Filipino) exhibited the highest SF, TSAT, or both SF and
TSAT compared with any other population group studied,
even after excluding polymorphisms associated with IO
(44, 191, 193). These differences remained significant after
adjusting for diabetes or liver disease (193). In a further
analysis of HEIRS data focused on women of reproductive
age, Asian ancestry was associated with a decreased risk of
ID and with increased iron stores compared with other ethnic
groups independent of known HH mutation in HFE (C282Y)
(191). Additional epidemiologic data from a study in Korean
adults (n = 4904) found mean TSAT in both females and
males was significantly higher than in Europeans as reported
in the HEIRS study (194, 195). Few data exist on possible
mechanisms explaining these ethnic differences. A recent
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functional study evaluated iron absorption in a group of
young East Asian women (32) and found mean percentage
of iron absorption was significantly higher in East Asian
women compared with that reported in European women
using the same methodology, even after correcting for a
fixed amount of SF (32). This observation suggests that the
storage threshold at which East Asians downregulate iron
absorption is higher, supportive of increased risk of IO in
East Asian populations at maturity. This may also explain the
observation that East Asian populations have a greater risk of
diabetes at a lower BMI (196, 197).

South Asians.
Fewer data are available from South Asian populations,
but existing data in this group suggest a lower iron status
compared with Europeans and East Asians. Data from South
Asian Surinamese adults (Hindustani Surinamese, n = 399)
aged 35–60 y showed significantly lower SF concentrations
than observed among a cohort of Dutch adults (n = 508)
(174). South Asian pregnant women (primarily from Pak-
istan and Sri Lanka, n = 198) were reported to have the
highest risk of ID and anemia when compared with pregnant
European (n = 326) and East Asian (n = 43) women (177).
Lower hemoglobin, SF, and TSAT have also been noted in a
group of South Asian women of reproductive age (176).

Hispanics.
At least 2 epidemiological studies have reported a signif-
icantly higher prevalence of ID in Hispanics (178, 190)
compared with other ethnic groups, and Hispanic ethnicity
has been associated with an increased risk of ID (191).
In addition, evidence from NHANES found that Hispanic
women of reproductive age had significantly lower SF and
TSAT compared with European women (180).

Native Americans.
Data on iron status among Native American populations are
limited. The HEIRS study included data from 645 Native
Americans. In this relatively small cohort, mean TSAT and SF
concentrations in Native American men and women did not
appreciably differ from the respective mean values reported
in European men and women (198).

Statistical evaluation of population-based data on iron
status
Multiple published reports of ethnicity and iron status
exist but few attempts have been made to compile these
data to explore statistical patterns of altered iron status.
To address this gap, relevant population-based data were
identified through PubMed, Web of Science, and Scopus
using the following key words: ethnicity, race, genetic, Asian,
European, Caucasian, African American, Chinese, Korean,
genetics, iron, iron status, iron homeostasis, iron absorption,
iron metabolism. Additional studies were identified through
references cited within relevant articles. To systematically
compare the data summarized above on iron status among
different ethnical groups, we extracted iron status data from TA
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TABLE 2 Comparison of iron status indicators between comparison ethnic groups and reference ethnic groups1

Reference ethnic
group

Comparison ethnic
groups

Men Women

Iron indicator Difference ± SE n2 Difference ± SE n2

SF, μg/L Asian [14] (40,874) [13] (31,036)
European − 180 ± 53 [15] (48,115) − 86 ± 33 [20] (62,736)
African American − 161 ± 73 [9] (14,025) − 68 ± 33 [8] (20,413)
South Asian − 192 ± 303 [1] (150) − 78 ± 163 [2] (488)

European [15] (48,115) [20] (62,736)
African American 19 ± 44 [9] (14,025) 19 ± 23 [8] (20,413)

TSAT, % Asian [6] (22,543) [7] (13,075)
European − 5 ± 13 [8] (38,532) − 3 ± 03 [10] (45,433)
African American − 7 ± 13 [8] (13,839) − 6 ± 03 [7] (19,908)
South Asian − 5 ± 5 [1] (150) − 11 ± 23 [2] (242)

European [8] (38,532) [10] (45,433)
South Asian − 1 ± 5 [1] (150) − 7 ± 25 [2] (242)
African American − 2 ± 16 [8] (13,839) − 3 ± 03 [7] (19,908)

Hb, g/dL African American [5] (2882) [4] (1350)
Asian 0.8 ± 0.13 [8] (20,265) 0.4 ± 0.2 [9] (9760)
European 0.6 ± 0.13 [10] (28,169) 0.8 ± 0.23 [13] (33,352)
Hispanic 0.8 ± 0.13 [1] (427) 0.6 ± 0.3 [1] (543)

Asian [8] (20,265) [9] (9760)
European − 0.2 ± 0.1 [10] (28,169) 0.4 ± 0.17 [13] (33,352)

1The estimated differences were calculated from linear mixed-effects models using the lmer and emmeans functions in R (R Foundation for Statistical Computing). P values
reported were corrected for multiple comparisons with Tukey’s test. Hb, hemoglobin; SF, serum ferritin; TSAT, transferrin saturation.
2n [number of studies included in the analyses] (number of people included).
3Significant difference between the comparison group and the reference group, P < 0.0001.
4Significant difference between the comparison group and the reference group, P = 0.0002.
5Significant difference between the comparison group and the reference group, P = 0.005.
6Difference between the comparison group and the reference group approached significance, P = 0.05.
7Significant difference between the comparison group and the reference group, P = 0.03.

both population-based studies involving multiple ethnicities
and other epidemiological or observational studies reporting
data from 1 ethnic group only. We categorized studies by
the number of ethnic groups involved and by the study
type (Supplemental Table 3). For analytical purposes, we
excluded studies designed to assess iron status in frequent
blood donors or pregnant and/or breastfeeding women, as
this would be expected to impact iron status. Studies were
also excluded if there were no available iron status data to
extract or if the iron status data were not reported by sex. As
for different literature examining the same study cohort, data
from the largest sample size were included in the analyses.

To explore possible differences in iron status indicators
(SF, TSAT, and hemoglobin) between different ethnic groups,
linear mixed-effects models were constructed with ethnicity
(East Asian, European, African American, Hispanic, and
South Asian) as a fixed-effect variable. Studies where the
data were collected from were considered as a random-
effect variable. The sample size of each ethnic group in
these studies was used as weight for the fixed-effect variable
and the mean age of each ethnic group was controlled
for in the analysis. Mean age could not be controlled for
models examining hemoglobin as this restricted the size of
the dataset because many of the available studies did not
report the mean age. Estimated marginal means of each
iron status indicator were calculated for all ethnic groups
using the package emmeans in R (R Foundation for Statistical

Computing). All statistical analyses were performed using
R version 3.4.3.

The estimated marginal means of iron status indicators
evaluated are presented in the Table 1. A statistical evaluation
of mean differences in each indicator between ethnic groups
is presented in Table 2. With this approach, Asians (pre-
dominantly East Asians) were found to exhibit significantly
higher SF concentrations and TSAT when compared with
Europeans, African Americans, or South Asians, and this
difference was significant for both males and females. While
significant effects were evident in both sexes, the magnitude
of the observed difference was significantly higher in males.
This finding is expected as women of reproductive age have
monthly losses of iron from menses, which may partially
explain why risk of excess iron accumulation is greater in
males. Evidence has shown that 1 μg SF/L is equivalent
to 8 mg of iron stores (199); thus, the mean difference
of 180 μg/L in SF would be translated into an additional
1440 mg of storage iron. If 1.5 mg of iron is absorbed
daily (21), this additional 1440 mg of storage iron would be
equivalent to the net amount of iron typically absorbed over
2.6 y.

Hemoglobin concentrations are impacted only when iron
stores have been depleted (200). African-American men
were found to have significantly lower hemoglobin compared
with European, Asian, or Hispanic men. Similarly, African-
American women had significantly lower hemoglobin when
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compared with European women. These findings are con-
sistent with previous literature evaluating hemoglobin as a
function of ethnicity (171, 176, 181–185).

Conclusions
This review highlighted the shared and unique genetic
variants among ethnic groups that have been associated
with iron status biomarkers, and possible differences in
iron status as a function of ethnicity were explored using
published data. To date, most genome-wide and candidate
gene association studies on iron homeostasis have been
conducted in European populations. Some of the associations
found in Europeans have been replicated in other ethnic
groups, but the clinical significance is unknown given the
varying minor or effect allele frequencies among different
populations. Interestingly, reported frequencies of key ge-
netic variants associated with iron traits among different
ethnic groups do not fully reflect epidemiological data on
iron status in different populations. Because iron traits may
be influenced by a combination of genetic, dietary, and
lifestyle factors, methods taking into account several variants
together, such as polygenic risk scores, may be better at
predicting the risk of ID or IO in specific populations.
Moreover, although recent studies have identified variants
in non–iron-related genes that are associated with iron
traits, how they vary as a function of ethnicity and the
significance of these SNPs have yet to be determined. Finally,
most genome-wide and candidate gene association studies
have been focused on blood biomarkers of iron status.
Although iron status biomarkers correlate with body iron
stores, their concentrations are sensitive to diet and disease,
which may have confounded current association studies.
Iron homeostasis in humans depends predominantly on the
tight regulation of dietary iron absorption by enterocytes.
Therefore, attempts to characterize genetic determinants of
interindividual variation in iron homeostasis using direct
measures of nutrient utilization are needed in order to better
understand the differences in iron homeostasis that exist
among different populations. Additional data are needed to
identify possible risks and benefits associated with universal
iron supplementation policies, such as those currently rec-
ommended for pregnant North American women (201), to
identify the genetic basis of population differences in iron
metabolism and disease susceptibility, and to help inform
population-specific dietary iron intake recommendations
and surveillance in at-risk populations.
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